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Abstract
We use classical molecular dynamics simulations to study the motion of sodium
atoms in amorphous Na2O–4SiO2 over a wide range of temperatures below and
above the glass transition temperature Tg. We find that the region of space most
visited by the sodium atoms forms a network of connected pockets that we call
channels. These channels are strongly correlated with the locations of the non-
bridging oxygens of the matrix and give rise to a pre-peak in the structure factor.
In order to understand the physical origin of the channels we have studied the
characteristics of the sodium atoms INside and OUTside the channels. We
show that neither the potential energy nor the local environment permit us to
distinguish between IN and OUT atoms. Nevertheless, our results indicate
that the channels correspond to regions of higher sodium density compared to
the rest of the system. Finally, as expected, we show that the mean square
displacement of the sodium atoms inside the channels is significantly larger
than that of the sodium atoms outside.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is of great importance to have a precise knowledge about the mechanisms governing the
motion of ions in glasses since these transport phenomena intervene in a wide range of important
physical processes, such as ion exchange, electrical and thermal conductivity, and aqueous
corrosion [1–3]. Such an investigation is considerably more difficult than for regular crystals
since the disorder of the glassy matrix intervenes both at short length scales (in the local motion
of the ions) and at large length scales (in the global properties of the trajectories). Concerning
the local motion, several models have been proposed based, for example, on a ‘forward–
backward hopping mechanism’ [4] or hopping processes over random potential barriers [5].
In addition, it has been suggested that a combination of the disorder and the long-ranged
Coulomb interactions between the ions gives rise to a strong backward correlation during their
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motion, leading to non-Debye behaviour as observed in the dielectric response of a variety
of materials [6]. Concerning the dynamics on large scales, a picture based on ‘preferential
pathways’ proposed some ten years ago [7] is now generally accepted [8]. In the same spirit,
recent molecular dynamics (MD) simulations of silica glasses with different concentrations of
sodium [9] have given some support to the ideas put forward by Greaves that ‘the clustering of
alkalis in oxide glasses marks out the pathways for ionic diffusion’ [10, 11] if the concentration
of alkalis is higher than a percolation threshold.

In order to shed some light on this problem, in this paper we give a review of results
obtained via MD simulations on the sodium–silicate glass Na2O–4SiO2 (NS4). Using an
adequate extension [12] of the realistic BKS potential [13] we have thoroughly analysed the
dynamics of the alkali ions on short length scales as well as the properties of the trajectories
at long times (2.8 ns). We have found that the ions move preferentially through a disordered
network of connected pockets that we call channels [15, 16]. However, contrary to the ideas
of Greaves, these channels are not due to a microsegregation of the sodium atoms but instead
define a region of space most visited by uncorrelated sodium atoms during a given time. Like
other authors [14], we find that the existence of these channels is reflected by a pre-peak in the
structure factor at q = 0.95 Å−1 which has recently been observed experimentally [18]. We
have found a strong correlation between these channels and the location of the non-bridging
oxygen (NBO) atoms [19], supporting the idea that the channels are entirely defined by the
underlying matrix [9, 17]. Moreover, in order to better understand the physical origin of the
channels, we have analysed the characteristics of the sodium atoms according to whether they
are INside the channels (NaIn)or OUTside the channels (NaOut) [19]. By analysing the potential
energy and the local pair distribution functions, we conclude that neither the potential energy
nor the local environment permit us to distinguish between IN and OUT sodium atoms. We
have also calculated the sodium atom density and found that it is larger inside the channels, as
recently suggested [17]. Moreover, to elucidate the diffusion mechanism of the sodium atoms,
we have determined a characteristic ‘residence’ time inside the channels which is shown to
follow an Arrhenius temperature dependence with an activation energy slightly larger than that
of all other activated processes present in the system. Finally, we have calculated the mean
square displacements and found that they are significantly larger for sodium atoms inside the
channels.

2. Simulations

We used a cubic box of edge length L = 20.88 Å containing NNa = 86 sodium, 173
silicon, and 389 oxygen atoms in order to reproduce the experimental value of the NS4 density
(2.38 g cm−3) [20]. To obtain the initial liquid configuration we considered a crystal of β-
cristobalite in which we randomly replaced the correct number of SiO4 tetrahedra by Na2O3

‘molecules’ to recover the NS4 stoichiometry and melted it at 4000 K. The liquid was then
left at this temperature for 70 ps (i.e. 50 000 MD steps of 1.4 fs each) in the microcanonical
ensemble ((N, V , E) = constant), a time long enough to generate a well equilibrated liquid.
As stated earlier, the interaction between the ions is described by a modified version [14] of
the potential proposed in [12] which is a generalization of the so-called BKS potential [13] for
pure silica. This two-body potential U , which includes a coulombic part (treated by the Ewald
summation method [21]) and a short-range part of the Buckingham type, has the following
form:

U(ri j ) = qi q j e2

ri j
+ Ai j exp(−Bi jri j) − Ci j

r6
i j

+
q̃i q̃ j e2

ri j
[1 − (1 − δiNa)(1 − δ jNa)]�(rc − ri j)

(1)
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where � is the usual Heaviside function and qSi = q̃Si = 2.4, qO = q̃O = −1.2, qNa = 0.6,
and q̃Na = 0.6 ln[C(rc − ri j)

2 + 1]. More details, including the values for these particular
parameters, can be found in [16]. In previous studies of the mixtures Na2O–2SiO2 (NS2)
and Na2O–3SiO2 (NS3), this potential was shown to reliably reproduce many structural and
dynamical properties of sodium–silicate melts [14–16]. It is therefore expected to be able to
describe the salient features of the microscopic dynamics of the present system.

After equilibrating the liquid at 4000 K, we cooled it to 300 K using a linear cooling
procedure with a quench rate of 2.3 × 1014 K s−1. During this quenching process we saved
the configurations (positions and velocities) at several temperatures (T = 4000, 3100, 2700,
2300, 1900, 1700 K) and subsequently used them as starting configurations for production
runs of 2.8 ns (i.e. two million MD steps). In order to improve the statistics, we generated at
each temperature three independent samples.

3. Evidence for channel diffusion of the sodium atoms

Since it has already been shown [14] that the diffusion constant for the sodium atoms is
considerably larger (by about two orders of magnitude) than that for the oxygen or silicon
atoms in the analogous but more concentrated systems NS2 and NS3, it can be assumed
that the sodium atoms in NS4 diffuse inside a quasi-frozen SiO2 matrix at sufficiently low
temperatures. Although the atoms of this matrix vibrate around equilibrium positions, they
do not show a substantial structural relaxation on the timescale of a few nanoseconds. To
determine the preferential pathways of the sodium atoms through the matrix we have followed
their trajectories. We divided the simulation box into Ntot = 203 distinct cubes (each with
the same volume of ≈1 Å3) and determined the number density of sodium atoms in each of
these small cubes as a function of time. This discrete distribution is thus a coarse-grained
approximation to a continuous one but we have made sure, by varying the mesh dimensions,
that the results obtained do not depend qualitatively on our choice of cube size.

In figure 1 we show by large grey spheres those cubes which have been visited by at
least ξ = 11 different Na atoms during a 1.4 ns run at 2000 K. The number of these cubes
represents the upper 10% of all cubes visited by at least one sodium atom. Therefore the
grey spheres outline that region of space through which relatively many different sodium
atoms pass (note that it is important to consider only different Na atoms to avoid taking into
account regions in which one sodium atom just oscillates around its equilibrium position).
From this figure we recognize immediately that most of the Na atom motion occurs in a
relatively small subset (≈6%) of the total available space; i.e. that the Na atom trajectories
do not uniformly fill the space. This subset is itself composed of several blobs or pockets
which are connected to each other by rather loose structures. These pockets have a typical
size of around 3–6 Å, although larger ones can also be found. This size has to be compared
with the typical cage size seen by a sodium atom on the timescale of the β-relaxation which
is of the order of 2–3 Å [14]. Hence we conclude that these pockets are comparable in size to
the local cages in which the atoms rattle back and forth at short times. The distance between
these pockets is typically 5–8 Å, which compares with a typical distance between two sodium
atoms of about 3.4 Å (estimated from MD simulations [19]) and with a hopping distance of
1–2 Å (this distance has been estimated from experiment using the assumptions that all ions
are mobile (strong electrolyte) and that the Haven ratio equals one [23]). We also mention
that from figure 1 we can see that these pockets are relatively well connected and, as we
will show below, this is reflected in the dynamics of the sodium atoms. We have checked
that other samples show a qualitatively similar spatial distribution, although the details are
of course different. Furthermore, we have checked that when defining the channels over a
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Figure 1. A snapshot of the simulation box. The grey spheres represent the regions where at least
eleven different sodium atoms have passed during a 1.4 ns run at 2000 K. The black spheres indicate
the regions where, during the same time, at least three different non-bridging oxygen atoms have
passed.

different simulation time (in particular 2.8 ns which is the time over which the results of the
next section have been calculated), their characteristics (mean pocket size and mean distance
between pockets) are almost the same as when they are defined as being the 10% of boxes
most visited by different sodium atoms. Only the threshold value ξ defined above depends
on the simulation time (it is roughly proportional to it). Hence we confirm the idea proposed
earlier [7] that the trajectories of the sodium atoms lie in channels that go through the SiO2

matrix. We emphasize, however, that the percolating structure that we see in figure 1 is a
dynamic one in the sense that it can only be found by averaging over the trajectories of all the
Na atoms and over a sufficiently long time. This is by contrast with a static picture in which
at any instant the sodium atoms form some sort of percolating cluster [5]. In figure 1 we also
show the locations of the non-bridging oxygens by black spheres. More precisely, the black
spheres indicate the cubes that have been visited by more than three different non-bridging
oxygens during the simulation time. One can see in this figure a spatial correlation between
the grey and black spheres.

In order to be more quantitative, we have calculated, for a given distance r between two
cube centres (which can only be a discrete number: 0, 1,

√
2,

√
3, 2, . . . times the individual

cube edge length δ = 1.044 Å), the number ℵ(r) of grey–black distances effectively seen in
figure 1. After averaging over three independent runs, the quantity 〈ℵ(r)〉 has been divided
by its value for NNa grey cubes and NNBO black cubes randomly chosen (without exclusion);
that is, ℵran(r) = NNa NNBOnd(r)/Ntot where nd(r) is the ‘degeneracy’ of the distance r , i.e. the
number of independent realizations of this distance from a given cube (1 for r = 0, 6 for
r = δ, 12 for r = δ

√
2, 8 for r = δ

√
3 . . .). In figure 2 the ratio �(r) = 〈ℵ(r)〉/ℵran(r) has

been plotted as a function of r . The fact that this ratio is significantly larger than unity for
distances between 1 and 2 Å indicates that there are strong short-range correlations between
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Figure 2. A plot of �(r) which gives a quantitative measure of the spatial correlation between
cubes defining the channels and cubes containing the NBOs, normalized by the result obtained for
randomly chosen cubes (see the text for a definition).

the positions of the cubes defining the channels and the cubes containing the NBOs. Since the
matrix is not totally frozen at 2000 K, the Na atoms moving inside the channels and some NBO
atoms can visit the same cube during the length of the simulation: this explains why �(0) �= 0.
Note, however, that �(0) is smaller than �(δ) indicating that the maximum correlation could
occur for distances smaller than or close to 1 Å. The existence of this maximum at a non-zero
r -value indicates that the NBOs are probably located on the border of the pockets defining the
sodium diffusion channels. Quantitative evidence for such a correlation between the location
of the NBOs and the location of the pockets confirms the idea that the channels are closely
related to the structure of the silica matrix [9, 19].

In figure 3 we show the sodium–sodium atom partial structure factor obtained from our
simulation. As already found for the NS2 and NS3 systems [14, 17],the structure factor exhibits
a pre-peak at about qmax = 0.95 Å−1 which corresponds in real space to the characteristic
distance between pockets. This pre-peak has recently been observed experimentally [18].
Moreover, Horbach et al [17] have performed similar work using a larger simulation box
and have found a pre-peak at about the same position. This result gives more confidence in
the existence of channels. In [15] we have shown that the location of the channels remains
practically independent of time (over a simulation time of 1.4 ns) for temperatures below
2000 K. It is reasonable to argue that channel diffusion exists only inside the solid glassy
phase of the matrix (in that regime where the sodium atoms explore only a fraction of the total
available space) whereas in the liquid phase, because of the diffusive motion of the silicon and
oxygen atoms themselves, the channels can no longer be defined (the sodium atoms explore
the total available space).

So far we have shown that at low T , the sodium atoms diffuse within a subspace of the total
available space. Also of interest is an understanding of how the Na atoms move inside these
channels. To address this point we have studied a quantity that we have called GNaNa

dB (t) by
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Figure 3. A plot of the sodium–sodium atom partial structure factor, SNaNa(q), as a function of
the modulus q of the wavevector.

analogy with the distinct part of the van Hove correlation function [15, 22]. It is proportional
to the probability of finding a new sodium atom in a small cube at time t if a different sodium
atom was inside the same cube at time t = 0, and is given by

GNaNa
dB (t) = Ntot

NNa(NNa − 1)

NNa∑
i=1

NNa∑
j=1

δ[mi (t) − m j (0)] (2)

where mi (t) is the vector made by the integer coordinates of the small cube containing particle
i at time t . In figure 4 we show GNaNa

dB (t) at different temperatures as a function of time t .
We see that with increasing time the curves for each temperature reach a maximum before
decreasing and finally converging towards unity, which is the expected long-time limit. The
maximum probability is reached after time t = τmax(T ). In figure 5 we have plotted τmax

versus 1/T and one can verify that τmax exhibits an Arrhenius behaviour with an activation
energy of about 1.3 eV. This value is consistent with those found for the activation energy of the
diffusion coefficient in NS2 (0.93 eV) and NS3 (1.26 eV) [14]. Hence we can conclude that the
sodium atoms move by thermally activated jumps between sites previously occupied by other
sodium atoms, in agreement with the suggestion of Greaves and Ngai [2]. We emphasize,
however, that τmax(T ) is not the time that an atom takes between jumps from one site to a
neighbouring site, which would be related to the diffusion constant, but is the time that it takes
for a site that has been freed to be occupied by a new Na atom (which is not necessarily a
nearest neighbour).

This result does not, however, necessarily imply that the motion of the sodium atoms is
collective. To investigate this point we have calculated how the distance between two sodium
atoms changes with time. If the motion of the atoms is collective, then it is expected that
the increase of this distance, �(t, δ0), will be slower if the initial separation between the
two atoms, δ0, is small rather than large. In figure 6 we show from top to bottom the time



Numerical investigation of ionic transport in glasses: the example of sodium in amorphous silica S1665

10
0

10
1

10
2

10
3

t [ps]

0

2

4

6

8

G
dB N

aN
a

1600 K

2200 K

2700 K

3000 K

4000 K

Figure 4. A plot of GNaNa
dB (t) at different temperatures (see the text for a definition).

2 3 4 5 6 7

10
4
/T [K

-1
]

10
0

101

10
2

10
3

τ 
[p

s]

τP: EA ~ 1.45 eV

τmax: EA ~ 1.3 eV

Figure 5. A plot of τmax, the location of the maximum of the GNaNa
dB (t) curve, versus 1/T . In the

same figure we have also plotted the time constant τP (T ) obtained from an exponential fit of the
quantity P(0, t) represented in figure 8.

dependence of �2(t, δ0) for sodium pairs that at time zero were nearest, next-nearest, or third-
nearest neighbours (the sorting of the atoms is done by examining the radial pair distribution
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Figure 6. The time dependence of �2(t, δ0), the squared distance between two sodium atoms that
at time zero were separated by a distance δ0, at T = 2000 K. The three curves correspond to
distances δ0 to the first-, second-, or third-nearest-neighbour shell (bottom to top). Inset: �2(t, δ0)

for the first-nearest-neighbour shell, at different temperatures, versus rescaled time.

function gNaNa(r)). From this figure we recognize that all three curves converge towards the
long-time limit L2/4 with the same time constant (the same general result is obtained by
studying the evolution of the Na–Na distance in ‘real space’, i.e. without taking into account
the periodic boundary conditions in which case the squared distance is not bounded by L2/4).
Since there is no dependence on δ0 we can conclude that the motion of the atoms is not
cooperative, by contrast to suggestions made in the literature [8]. In view of the fact that
the snapshot in figure 1 shows that each pocket has several connections (pathways) to other
pockets, such a quick decorrelation is, a posteriori, not surprising (note that the connectivity
between the pockets is even higher than suggested in figure 1 since all of the connections
cannot be seen due to the periodic boundary conditions).

We also note that the decay of the correlations can be well approximated by an exponential
function with a time constant τ� independent of δ0. In the inset of figure 6, we plot �2(t, δ0)

for the first-nearest-neighbour shell, for all temperatures investigated, versus t/τ�(T ). Since
these curves collapse onto a master curve within the accuracy of the data at low T , we conclude
that the mechanism for the decorrelation, and hence the motion, is independent of T . Finally
we mention that τ�(T ) also shows an Arrhenius dependence with an activation energy around
1.3 eV, in agreement with the other timescales for sodium atom motion.

Certain models for the sodium atom dynamics assume that after the jump of an atom
there is an enhanced probability for it jumping back to its original site [4]. Therefore we
have calculated the probability that a sodium atom in a site at time zero moves, for t > 0,
over a distance which is larger than the beginning of its first-nearest-neighbour shell (2 Å as
determined from gNaNa(r)) and then back to its original site. We found that the maximum value
for this probability is around 26% at 2000 K. This result has to be compared with the ‘trivial’
one which is obtained by noting that each sodium atom in NS4 has about five other sodium
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atom nearest neighbours, thus giving a probability for jumping back of 1/5 = 20%. Hence
we conclude that the atoms do not show a significant tendency for jumping back (backward
correlations), at least not in the temperature range studied here.

4. Differences between sodium atoms inside and outside the channels

Once the channels are defined as being the upper 10% of the cubes visited by different sodium
atoms during a given period of time (2.8 ns in what follows), we can go back and distinguish for
every time t those sodium atoms which are inside (NaIn) and those which are outside (NaOut)

the channels and calculate the physical quantities characteristic for each of them.
Our aim in this section is to understand why, at low temperatures, the Na atoms visit more

frequently a particular fraction of the total available space (some of the results contained
in this section are already published in [19]). The first possible explanation is that the
Na atoms visit sites that are more energetically favourable. To check this idea, we have
calculated the individual potential energy distributions of the sodium atoms at 1700 K (over
2000 configurations and three samples) when they are inside or outside a channel. We find that
there is no significant difference between the distributions for NaIn and NaOut since they are
both Gaussians centred approximately at −3.8 eV with the same half-width at half-maximum
of ≈0.6 eV. Therefore it appears that the energy is not the driving force for explaining why
the Na atoms form channels. Nevertheless, one may argue that the time average can smear out
the effect but, as we have shown in section 3, the sodium atoms visit sites previously occupied
by other sodium atoms [15, 16] and therefore if these sites were energetically more favourable
we should have been able to distinguish them.

Nonetheless, if there exists a structural difference at short range for NaIn and NaOut, it
would not be detectable in the two distributions, since they reflect the whole environment of
the Na atoms, including the long-range arrangement of the surrounding particles. Therefore
we decided to analyse the local environment of the sodium atoms (at 1700 K) via the radial
pair distribution function and the integrated number of neighbours [19]. The major difference
is that a NaIn atom is surrounded on average by one more Na neighbour compared to a NaOut

atom and this goes together with a decrease in the number of nearest Si neighbours. In contrast,
the local oxygen environment remains identical for the sodium atoms inside and outside the
channels. Finally, concerning the nearest-neighbour distances to other species, there is no
significant change between NaIn and NaOut except a slight decrease (0.1 Å) of the NaIn–Na
distance compared to the distance between a NaOut and other sodium atoms. Given these
results, it is clear that the local structure of the sodium atoms inside and outside the channels
is not significantly different enough to explain the existence of the channels.

It appears, nevertheless, from the last paragraph that the NaIn atoms have on average more
Na neighbours than the NaOut atoms. It is hence justifiable to calculate the sodium density
ρNa inside and outside the channels (which is simply N In

Na/Vchan or NOut
Na /(Vvis − Vchan) where

Vvis is the total volume visited by the sodium atoms and Vchan is the volume of the channels)
as a function of T . In figure 7, one can see immediately that the sodium density inside the
channels is higher than that outside, particularly at low temperatures (below Tg). The channels
have been defined as a subspace highly visited by the sodium atoms, but we can now assert
that they also form a subspace of high sodium density. We emphasize that a higher sodium
concentration does not necessarily imply a clustering of alkalis [2, 10, 11, 24, 25]. Actually we
have previously shown that no clustering can be observed in a single snapshot of the simulation
box [15]. Finally, the fact that the two curves converge towards the limit of uniform density
at high temperatures is evidence that channels do not exist when the system is completely
melted.
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Figure 7. Sodium density ρNa inside and outside the channels versus temperature.

Once we know the position of the Na atoms at every time t with respect to the channels,
it is of great interest to calculate a mean ‘residence’ time of the Na atoms within the channels.
This can be done by determining the probability P(0, t) that a sodium atom inside a channel
at t = 0 is still inside a channel after a time t . P(0, t) is given by

P(0, t) = 1

N In
Na(0)

N In
Na(0)∑
i=1

ni (t), with ni =
{

0 outside a channel,

1 inside a channel.
(3)

This probability is represented in figure 8 at different temperatures. The expected fast decay
from unity at shorter times cannot be seen in figure 8 due to the fact that we save the
configurations every 1.4 ps (1000 MD steps). But since the channels have been determined
with this ‘time step’ we have decided to calculate our probability under the same conditions.
Consequently, P(0, t) is slightly overestimated since we do not take into account the short-
time dynamics. In figure 8 we see that P(0, t) decreases and converges towards the long-time
limit N In

Na/NNa very rapidly at high temperatures while at low temperatures (T � 2300 K)
this limit is not reached until after 1.5 ns. Each of these curves can be fitted reasonably well,
after subtracting the asymptotic limit, by an exponential function with a time constant τP . The
1/T dependence of the latter is shown by a linear–log plot in figure 5 where it is compared
with τmax defined earlier. It is remarkable that the typical residence time τP (T ) exhibits an
Arrhenius behaviour with an activation energy around 1.45 eV. This value is larger than the
activation energy of 1.3 eV found earlier which is characteristic of the diffusive motion of the
whole assembly of sodium atoms. This probably indicates that, from an energetic point of
view, the mechanism governing the expulsion of Na ions from a channel is more costly than
other mechanisms which control the mean displacement of the ions.

Finally, we have decided to quantify the influence of the location of the sodium atoms
on their diffusion. Therefore we have calculated the mean square displacements (MSD),
R2

In/Out(t) = 〈|�r(t) − �r(0)|2〉, of the atoms that are continuously inside/outside of the
channels with a discretization time of 1.4 ps. In figure 9 we see that at low temperatures
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Figure 8. The probability P(0, t) that a sodium atom is inside a channel between time t = 0 and
time t �= 0 for different temperatures.

(T = 1700, 1900 K) R2
In is always larger than R2

Out with a maximum difference after ≈0.1 ns
when R2

In is twice as large as R2
Out . One can hence assert that the Na atoms are more mobile

inside the channels. This result is consistent with the findings of Horbach et al [17] who
state that the ‘sodium atoms move quickly between preferential sites’ but has never before
been directly quantified. On the other hand, no distinction can be seen between the two mean
square displacements at T = 2300 K (figure 9(c)). This originates from the fact that when the
temperature increases, the channels are no longer static and are less and less well defined (the
discrimination between IN and OUT becomes therefore more difficult) such that they no longer
influence the diffusion of the Na atoms (this is of course also true at even higher temperatures).
We can hence conclude that at low temperatures when static channels are formed, the diffusion
coefficient of the sodium atoms is higher when they are inside the channels.

5. Conclusions

In summary, we have shown that at low temperatures the long-time trajectories of the sodium
atoms in the silica matrix occupy only a relatively small fraction of the total space. This subset
forms a well connected network of pockets which is explored very quickly by each sodium
atom. We emphasize that in individual snapshots the existence of these channels can hardly be
seen, at least for the sodium concentration studied here, which is in contrast with the popular
picture proposed by Greaves [10, 11]. The motion inside the channels is not cooperative since
nearby atoms decorrelate, quickly which is also distinct from common belief. Moreover, we
have investigated the properties of the sodium atoms according to whether they are INside or
OUTside a channel. We have first shown that, contrary to a naive picture, the distribution of
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Figure 9. R2
In(t) and R2

Out(t), the mean square displacements of Na atoms which are continuously
inside or outside the channels respectively, at (a) 1700 K, (b) 1900 K, and (c) 2300 K.

the potential energy of the individual NaIn atoms does not differ from that of the NaOut atoms.
Presumably the existence of the channels has to be looked for more in terms of free energy
and may be connected to entropic effects. In fact, it is reasonable to think that the creation
of the channels is related to the vibrational characteristics of the SiO2 matrix. To address
this point it is possible to modify these characteristics and measure their influence on the
sodium dynamics, an investigation which is currently under way [26]. In addition, from a
study of the environment of the NaIn and NaOut atoms, we have found only a slight increase
in the Na coordination number for sodium atoms inside the channels which is nevertheless
consistent with the fact that at low temperatures (T � 3000 K) the concentration of Na atoms
is higher inside than outside the channels. This is no longer true at high temperatures since
the matrix completely melts and channels no longer exist. In addition, by calculating the
probability P(0, t) that a Na atom is inside a channel between times 0 and t , we have defined a
characteristic residence time inside the channels, τP (T ), that exhibits an Arrhenius dependence
with an activation energy around 1.45 eV. The comparison of this energy with that of the other
activated processes present in the system seems to indicate that the mechanism governing the
expulsion of Na ions from a channel is energetically more costly than the mechanism for global
diffusion of the ions. Finally, we have shown that at low temperatures when the channels are
well defined, the Na atoms are more mobile inside the channels than outside and, in this sense,
one can really speak about channel diffusion.
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